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A direct and intuitive way to improve the efficiency of machine learning (ML)-based decision-making
for network traffic monitoring tasks like detecting volumetric DDoS attacks [8, 7, 17, 16, 9, 11] is to apply
inference at the prefix-level rather than at an individual source- or flow-level. Although “ambiguous” pre-
fixes containing both attack and benign traffic may reduce accuracy, considering prefix aggregates enables
exponential reduction in the number of traffic entities that must be monitored and classified. This reduc-
tion is key towards realizing ML-based inference in resource-constrained environments like programmable
switch hardware [4, 5] in practice. Moreover, iterative refinement algorithms can be developed to zoom-in
on ambiguous prefixes and achieve accuracy that rivals that of pure source- or flow-level approaches.

However, realising prefix-level ML solutions requires prefix-level training datasets that satisfy the follow-
ing two key requirements: (i) Training data must reflect how features associated with attack and benign
traffic “blend” to form ambiguous prefixes through aggregation (i.e., when going from longer to shorter prefix
lengths). (ii) Training and testing data must come from distinct attack scenarios to avoid cross contamina-
tion through prefix aggregation (i.e., a prefix in the test set must not contain any descendent prefixes that
were in the training set). Also, features such as inter-packet gap statistics are non-linear in prefix aggregation
and must be computed independently based on the particular interleaving of packets in each prefix.

Unfortunately, existing datasets fail to meet both of these requirements because they often include only a
small number of distinct attacker source addresses in a single prefix and often contain only a single instance
or just a few instances of each type of attack. To illustrate, Table 1 shows the number of distinct prefixes at
/8 - /32 levels of aggregation for several publicly available datasets commonly used in DDoS defense research
studies. While these existing datasets capture realistic aggregation of either attack sources or of benign
sources, they do not capture realistic blending of the two. For example, although the Booters dataset [13]
provides samples of actual attacks launched by DDoS-as-a-service operations, it contains no benign traffic.
More recent datasets like CIC do include some benign traffic, but only contain a single attack source address.

Dataset # Benign # Attack
/8 /16 /24 /32 /8 /16 /24 /32

CAIDA (’07) [2] 0 0 0 0 117 4 k 8.7 k 9 k
ISCX (’12) [15] 123 1590 2041 2129 6 6 9 14
Booters (’15) [13] 0 0 0 0 42 961 3 k 4.4 k
Mirai (’16) [6] 0 0 0 0 162 3.5 k 9.8 k 10 k
CIC (’17) [14] 156 922 2125 3432 1 1 1 1
CSECIC (’18) [3] 1 1 6 446 2 4 10 10
MAWILab (’19) [10] 211 30 k 3.3 m 5.3 m 0 0 0 0
CAIDA (’19) [1] 250 27 k 323 k 1.3 m 0 0 0 0
Proposed “data-fusion” method 216 30 k 3.2 m 4.8 m 179 7 k 45 k 50 k

Table 1: Number of distinct attack and benign prefixes in datasets commonly used for training and testing
ML-based approaches to DDoS traffic detection.

This talk describes a practical solution to the challenging requirements of prefix-level datasets for prefix-
level ML which we refer to as “data-fusion”. The key idea of data-fusion is to combine two or more publicly-
available datasets on a flow-level or source-address level to compensate for their limitations w.r.t. prefix-level
structure. This enables producing a large number of independent attack scenarios that captures realistic
blending of features under prefix aggregation and presents ambiguous prefixes to the model during training.
We describe our practical experience using data-fusion to train and evaluate a novel approach to volumetric
DDoS attack detection called ZAPDOS [12]. Finally, we conclude by considering several new inference
techniques enabled by our data-fusion method and their potential to improve the accuracy and efficiency of
ML-based inference for network traffic.
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