# DNS-based User Tracking (Attacks and Defenses)

#### Presenter: Zhou Li

#### Data-driven Security and Privacy (DSP) Lab EECS department, University of California, Irvine DINR'23, 02/22/2023



University of California, Irvine

#### Outline

Background

Threat Model

Attack: DSCorr

Defense: LDPResolve

Conclusion

Paper published: "Hide and Seek: Revisiting DNS-based User Tracking. Deliang Chang, Joann Qiongna Chen, Zhou Li, and Xing Li. EuroSP'22".

#### Background: DNS-based User Tracking

- Users send DNS queries before almost every network activities.
- Different users have different preferences.
- Can we track a user by their DNS queries?
  - Privacy violation



#### **Attack: Threat Model**

- Goal: track users based on their DNS queries
  - E.g., public recursive resolvers
- Challenge: a user's identifier, aka, source IP keeps changing
  - E.g., DHCP, moving from one access point to another, cellular network
- This is an inference/classification problem
  - Attacker's input: **Session**, DNS queries from one source IP in a time windos
  - Attacker's output: **user ID** (real or pseudo)



#### **Threat Model**

- Formalization of DNS-based user tracking
  - Link different sessions of a same user from different source IPs.



#### **Existing Attacks**

- Supervised, semi-supervised or unsupervised learning
  - Feature extraction from DNS queries
  - Bayesian classifier, KNN, Dirichlet multinomial mixture
  - Fixed threshold
- All assuming a closed-world setting
  - The attacker already knows the set of users before tracking
- How about open-world setting?
  - Unknown user can be encountered during tracking

[1] Dominik Herrmann, Christian Banse, and Hannes Federrath. Behavior-based tracking: Exploiting characteristic patterns in dns traffic. Computers & Security, 39:17–33, 2013.

[2] Dominik Herrmann, Matthias Kirchler, Jens Lindemann, and Marius Kloft. Behavior-based tracking of internet users with semi-supervised learning. In 2016 14th Annual Conference on Privacy, Security and Trust (PST), pages 596–599. IEEE, 2016.
[3] Dae Wook Kim and Junjie Zhang. You are how you query: Deriving behavioral fingerprints from dns traffic. In International Conference on Security and Privacy in Communication Systems, pages 348–366. Springer, 2015.

#### Our Attack: DSCorr



## **Domain Embedding**

- Domain distance: 0 or 1 by previous works
  - Too coarse-grained
- Fine-grained domain distance based on domain context
  - Domains usually visited together should have small distance
- Use Word2Vec (NLP) to build domain embedding vectors
  - Domain -> Word
  - DNS session -> Context



SkipGram of Word2Vec

## **Evaluation of DSCorr**

- Different tracking methods: Jaccard/Cosine/Bayesian Classifier/DSCorr
- Different feature: unigram & bi-gram
- Different number of sessions in labeled set for each user

| #  | jac  | cos  | bay  | ja-bi | co-bi | ba-bi | DSCORR |
|----|------|------|------|-------|-------|-------|--------|
| 1  | 42.2 | 40.7 | 37.4 | 45.4  | 40.1  | 36.5  | 52.6   |
| 2  | 56.0 | 52.8 | 54.8 | 59.2  | 52.8  | 54.3  | 67.5   |
| 3  | 67.2 | 60.3 | 65.7 | 67.2  | 60.3  | 65.8  | 74.4   |
| 5  | 74.8 | 69.3 | 76.3 | 74.8  | 69.3  | 76.8  | 80.5   |
| 10 | 78.8 | 78.0 | 86.2 | 82.7  | 77.6  | 87.3  | 87.4   |

Table. Tracking accuracy under closed-world setting.



Findings:

Fig. Tracking accuracy under **open-world setting**.

- DSCorr is more effective under closed-world setting, especially when there's less labeled data.
- Auto-threshold works. It allows DSCorr to work under open-world setting.
- Popular domains affect user tracking.

#### Defense: Local Differential Privacy (LDP)

- The data collector is untrustworthy
- Noises added to the clients' data before collection
- LDP guarantees the information leakage after noises are bounded by  $\epsilon$
- Used by Apple to collect emoji usage ...

**Definition 1** ( $\epsilon$ -Local Differential Privacy [89]). An algorithm  $\mathcal{A}$  satisfies  $\epsilon$ -local differential privacy ( $\epsilon$ -LDP), where  $\epsilon > 0$ , if and only if for any pair of input  $x_1$  and  $x_2$ , we have

$$\forall y \in \operatorname{Range}(\mathcal{A}) : \frac{\Pr[\mathcal{A}(x_1) = y]}{\Pr[\mathcal{A}(x_2) = y]} \le e^{\epsilon}$$
 (1)

where  $\operatorname{Range}(\mathcal{A})$  denotes the set of all possible output results of an algorithm  $\mathcal{A}$ .

#### **Our Defense Method: LDPResolve**



Murakami, Takao, and Yusuke Kawamoto. UtilityOptimized Local Differential Privacy Mechanisms for Distribution Estimatiob/SENX 2019.

#### Design of LDPResolve



**Primary Resolver** 

#### Design of LDPResolve



Murakami, Takao, and Yusuke Kawamoto. Utilit@ptimized Local Differential Privacy Mechanisms for Distribution EstimatioblSENX 2019.

#### Design of LDPResolve



Murakami, Takao, and Yusuke Kawamoto. UtilityOptimized Local Differential Privacy Mechanisms for Distribution Estimatiob/SENX 2019.

#### **Evaluation of LDPResolve: Privacy**



Fig. Tracking Accuracy given different sensitive set size (i.e., 2k and 10k)

#### Evaluation of LDPResolve: Utility

| C.         | TrkAcc         | std     | std s    | std n |            |        |        |         |       |     |        |        |             |         |
|------------|----------------|---------|----------|-------|------------|--------|--------|---------|-------|-----|--------|--------|-------------|---------|
| <b>C</b> 1 |                |         |          |       | <b>E</b> 2 | TrkAcc | std    | std_s   | std_n |     |        |        |             |         |
| 15         | 38.7           | 332.30  | 1279.53  | 3.48  | 10         | 8/1 8  | 121 50 | 2/11 10 | 3 27  | Ne  | TrkAcc | std    | etd e       | std n   |
| 10         | 34.1           | 343.66  | 1279.63  | 5.71  | 10         | 04.0   | 121.33 | 241.10  | 5.27  | 115 |        | 514    | 314_3       | 3.02.11 |
|            | 10 51.1 515.00 | 0 10100 | 1275100  | 5.71  | 8          | 80.2   | 264.24 | 731.94  | 3.80  | 1k  | 68.0   | 363.13 | 2552.22     | 1.72    |
| 9          | 28.4           | 352.52  | 1279.94  | 6.85  | -          |        |        |         |       |     |        |        |             |         |
|            |                |         |          |       | 7          | 70.3   | 305.47 | 967.65  | 5.31  | 2k  | 62.2   | 388.23 | 2205.18     | 2.15    |
| 8          | 19.5           | 360.62  | 1280.39  | 8.54  |            |        |        |         |       |     | 10.0   | 0-0-0  | 4 6 6 9 9 4 |         |
| 7          | 10.2           | 205 20  | 1270 70  | 10.00 | 6          | 57.4   | 326.82 | 1127.27 | 5.52  | 5K  | 48.8   | 3/6./3 | 1669.81     | 6.54    |
| /          | 10.2           | 305.38  | 12/9.76  | 10.00 | 5          | 12.6   | 226 91 | 1214 65 | 5.67  | 104 | 2/1 1  | 3/3 66 | 1279 63     | 5 71    |
| 6          | 37             | 367 61  | 1279 92  | 10 75 | 5          | 45.0   | 220.01 | 1214.05 | 5.07  | TOK | 34.1   | 343.00 | 1279.03     | 5.71    |
| Ū          | 5.7            | 507.01  | 127 5.52 | 10.75 | 2          | 34.1   | 343.95 | 1279.63 | 5.71  | 20k | 23.3   | 304.17 | 949.84      | 7.13    |
| 5          | 1.4            | 368.45  | 1279.01  | 11.20 | _          | •      |        |         | •=    |     |        |        |             |         |
|            |                |         |          |       | 0.5        | 33.9   | 343.95 | 1282.55 | 4.38  |     |        |        |             |         |
| 2          | 0.2            | 369.12  | 1280.31  | 10.84 | _          |        |        |         |       |     |        |        |             |         |

#### Key Terms

Ns: Size of sensitive set

€1: Overall privacy Budget

 $\boldsymbol{\mathcal{E}}_2$ : Privacy Budget for sensitive domains.  $\boldsymbol{\mathcal{E}}_2 \leq \boldsymbol{\mathcal{E}}_1$ 

#### Conclusion

- DNS-based user tracking is a real privacy concern
  - Existing works are effective under closed-world setting.
  - Our attack DSCorr is effective in both closed-world and open-world settings...
- Popular domain is the key to DNS-based user tracking.
- LDPResolve could be effective in terms of defeating tracking.
  - LDP ensures the privacy leakage is bounded regardless of the attack methods





• AMP





- EAGER SaTC
- IMR
- CAREER 
   This talk

# **Team (DSP Lab)**



Zhou Li



Joann Chen



Jiacen Xu







Xuesong Bai



Xiang Li