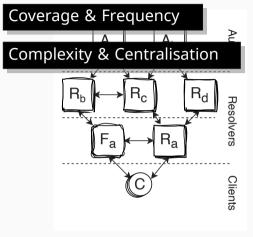
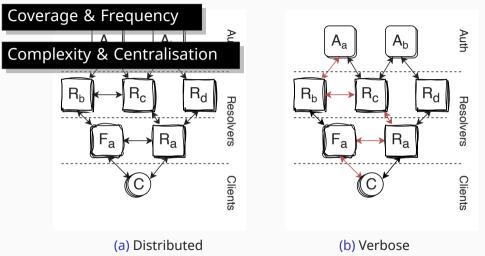
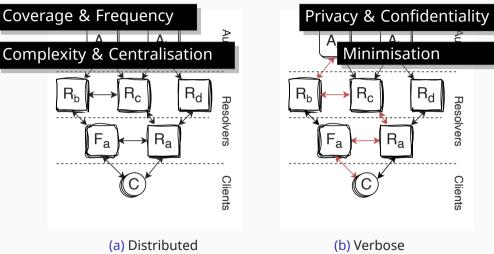

Challenges on Working with DNS Data


<u>Alfred Arouna</u>¹² • Mattijs Jonker³ • Ioana Livadariu¹ alfred@simula.no

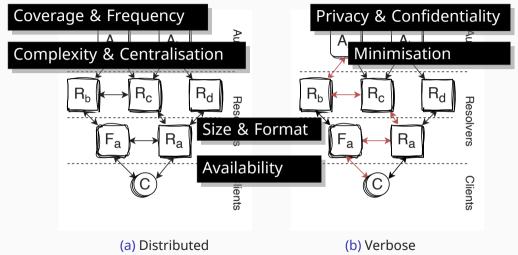
¹Simula Metropolitan • ²Oslo Metropolitan University • ³University of Twente

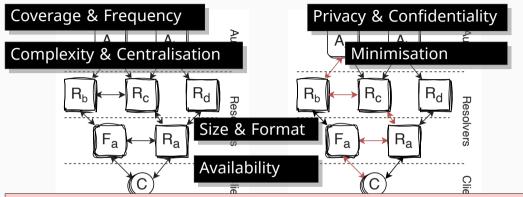

February 22, 2023 • DNS and Internet Naming Research (DINR) 2023 • Virtual Workshop



(a) Distributed

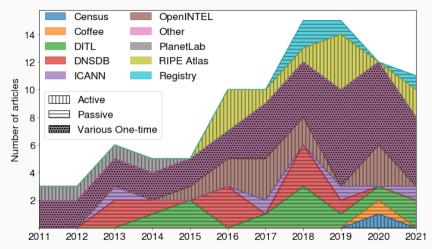
(a) Distributed

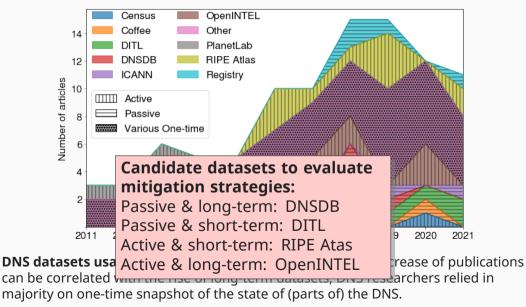




Simplified Overview of the DNS Infrastructure

Resolvers


Clients


How has the DNS research community so far managed to address these data collection challenges? Evaluate existing datasets usage from most impacting publications on DNS.

Popular DNS Datasets

DNS datasets usage over the last 10 years. Although the increase of publications can be correlated with the rise of long-term datasets, DNS researchers relied in majority on one-time snapshot of the state of (parts of) the DNS.

Popular DNS Datasets

Distributed: Addressing Challenges

Table: Mitigation approaches for challenges resulting from the distributed DNS infrastructure. Long-term datasets have large coverage based on consistent data collection frequency.

	Coverage	Frequency	Complexity	Centralisation
OpenINTEL	Large	Consistent	High: Workers	Low
RIPE Atlas	Limited	Variable	High: probes	Low
DNSDB		Consistent		Medium
DITL	Limited	Variable	High:servers	Medium

Table: Mitigation approaches for challenges resulting from the distributed DNS infrastructure. Long-term datasets have large coverage based on consistent data collection frequency.

	Coverage	Frequency	Complexity	Centralisation	
OpenINTEL Large Consistent High: Workers Low					
RIPE Atlas	Limited	Variable	High: probes	Low	
Dataset should apply a distributed systematic collection data at an					
established frequency with minimal burden on the DNS.					

Verbose: Addressing Challenges

Table: Mitigation approaches for challenges resulting from DNS verbosity. Addressing privacy and confidentiality is still challenging. However, minimization can help to reduce privacy and confidentiality risks. Active dataset by controlling the resolver are less impacted by minimization.

	Privacy	Confidentiality	Minimization
	High: zones		Medium
			Medium
DNSDB	Medium ¹	Medium ¹	High
DITL	Medium ²	Medium ²	High

¹resolver-authoritative ²root-servers

Verbose: Addressing Challenges

Table: Mitigation approaches for challenges resulting from DNS verbosity. Addressing privacy and confidentiality is still challenging. However, minimization can help to reduce privacy and confidentiality risks. Active dataset by controlling the resolver are less impacted by minimization.

		Privacy	Confidentiality	Minimization
		High: zones High: user		Medium Medium
Dataset should consider the increasing adoption of the principle minimum disclosure to minimize privacy and confidentiality risks				

¹resolver-authoritative ²root-servers

Distributed & Verbose: Addressing Challenges

Table: Mitigation approaches for challenges resulting from DNS distributed infrastructure and verbosity. The variability in data formats limits for large-scale and long-term analysis. Active dataset are publicly available while passive dataset access are on demand.

	Format	Size	Availability
	Avro/Parquet	+10TB ³	Public
RIPE Atlas	JSON	+25TB ⁴	Public
DNSDB	ISC/dnsqr	n.a.	Restricted
DITL	PCAP	n.a.	Restricted

³10TB of compressed data as of Feb. 2015 (1 year data).

⁴July 2015 in Hadoop/HBase (5 years of data).

Distributed & Verbose: Addressing Challenges

Table: Mitigation approaches for challenges resulting from DNS distributed infrastructure and verbosity. The variability in data formats limits for large-scale and long-term analysis. Active dataset are publicly available while passive dataset access are on demand.

	Forma	it Size	Availability
		arquet +10T	B ³ Public
RIPE A	tlas JSON	+25T	B ⁴ Public

The variability in data formats limits for large-scale and long-term analysis. Compacted-DNS (C-DNS) seems to be a good candidate for a common data format. However, Avro/Parquet has been proven for large-scale analysis as part of DNS big data pipeline.

- TOTB OF COMPRESSED DATA AS OF FED. 2015 (1 year data).

⁴July 2015 in Hadoop/HBase (5 years of data).

Comments?

Ideas to improve the work? Questions?