
Towards a GPU-Accelerated Domain Name System

(Abstract)

Matthäus Wander
Universität Duisburg-Essen

Duisburg, Germany
matthaeus.wander@uni-due.de

Johannes Brüderl
Universität Duisburg-Essen

Duisburg, Germany
johannes.bruederl@uni-due.de

1. INTRODUCTION
Authoritative servers in the Domain Name System (DNS)

constitute the backbone of the Internet naming infrastruc-
ture. Scalability is one of the key issues to serve a large client
population. The Domain Name System Security Extensions
(DNSSEC) put additional burden on name servers due to
larger message sizes and more complex server logic [1]. The
NSEC3 secure denial of existence [6] is among the DNSSEC
operations that can quickly exhaust the CPU and thus re-
duce the server capacity. Whenever a client queries for a
non-existing domain name or resource record, a DNSSEC
server with NSEC3 needs to compute the hash value of the
query name to construct the proof of non-existence. The
NSEC3 hash function is parametrized with the number of
hash iterations, which serves as a trade-off between CPU
load and the privacy assurance of NSEC3. With weak it-
erations, attackers can reverse the NSEC3 hash values and
discover the contents of the DNS database via zone enu-
meration, which is what NSEC3 was supposed to prevent
[2]. Prior work has shown that NSEC3 hash attacks can be
carried out efficiently with GPUs [7].

We suggest to explore the use of GPUs on the server side
to improve the scalability of the DNS. Offloading heavy-
weight operations to the GPU gives us the potential to
free the CPU for other tasks, thus lifting existing capac-
ity boundaries at lower costs than with another CPU-based
host. In case of NSEC3, the additional processing power
of the GPU allows us to raise the hash iterations and thus
improve the protection against zone enumeration.

2. DESIGN RATIONALE
GPUs provide vast computing power by parallelizing work

with a manycore processor architecture. Several technical
limitations need to be considered when attempting to accel-
erate DNSSEC servers with GPUs:

1. GPU threads are executed in bundles called wavefront
(AMD) or warp (Nvidia). Each GPU stream processor
in a wavefront executes the same instruction in lock-
step. If branch divergence occurs, the scheduler will
stall some threads, thus degrading performance. Prior
work suggests that this is one of the main reasons why
the GPU speedup of asymmetric cryptographic algo-
rithms is moderate at best [5]. The NSEC3 hash func-
tion is our first choice for GPU offloading, as it uses
fast integer arithmetics without branch divergence.

2. GPUs have dedicated memory, which requires to move
data between device boundaries before and after exe-

cution. Furthermore, while a GPU has very fast per-
thread memory, large data structures like DNS zones
will fit into global memory only. Threads compete for
access to global memory, which can slow down GPU
programs significantly.

3. DNSSEC servers should respond to individual queries
as quickly as possible, but GPUs are best suited to
batch computations. This leads to the optimization
problem of compiling appropriately sized batches ver-
sus the latency penalty incurred to each response.

3. PRELIMINARY RESULTS
We have implemented a partial DNSSEC server proto-

type in C++/OpenCL that offloads the NSEC3 hashing to
a GPU. Experiments with an AMD R9 390 and an Nvidia
GTX 970 show that a GPU handles DNSSEC/NSEC3 load
with any iteration count between 0 and 2500 while satu-
rating a Gigabit Ethernet link. The response latency is
about 13–15 ms for 0 to 150 iterations. In comparison when
running the OpenCL code on an Intel i5-3570K CPU, the
server throughput drops below Gigabit speed for configura-
tions with more than 100 hash iterations. With 2500 itera-
tions the CPU throughput caps at 11% of the GPU server
performance.

4. RESEARCH QUESTIONS
Although the preliminary results show that GPU offload-

ing is a promising approach to improve the scalability of
DNSSEC servers, a few open questions remain.

1. What is the best strategy for GPU offloading, e.g. op-
portunistic offloading above a certain load threshold?

2. What is the sweet spot of GPU batch sizes subject to
hash iterations, query load and latency?

3. What benefit can be expected in a real-world scenario,
i.e. with a full-featured DNSSEC server and mixed
traffic consisting of regular and NSEC3 responses?

4. How to integrate GPU accelerators with existing server
implementations?

5. Is it worthwhile to offload online signing, other crypto-
graphic methods like NSEC5 [4] or DNS zone lookups
to the GPU?

6. Can we lower the per-response latency by using par-
allelizable hash functions like Keccak [3] instead of se-
quantially iterated hashing?

7. Are CPUs with Integrated Graphics Processors (IGPs)
favorable over dedicated GPUs due to zero-copy mem-
ory usage?



5. REFERENCES
[1] B. Ager, H. Dreger, and A. Feldmann. Predicting the

DNSSEC overhead using DNS traces. In 2006 40th
Annual Conference on Information Sciences and
Systems, pages 1484–1489. IEEE, 2006.

[2] D. J. Bernstein. Breaking DNSSEC, Aug. 2009.
Keynote lecture at Workshop on Offensive Technologies
(WOOT).

[3] P.-L. Cayrel, G. Hoffmann, and M. Schneider. GPU
Implementation of the Keccak Hash Function Family.
In International Conference on Information Security
and Assurance, pages 33–42. Springer, 2011.

[4] S. Goldberg, M. Naor, D. Papadopoulos, L. Reyzin,
S. Vasant, and A. Ziv. NSEC5: Provably Preventing
DNSSEC Zone Enumeration. IACR Cryptology ePrint
Archive, 2014:582, 2014.

[5] O. Harrison and J. Waldron. Efficient Acceleration of
Asymmetric Cryptography on Graphics Hardware. In
International Conference on Cryptology in Africa,
pages 350–367. Springer, 2009.

[6] B. Laurie, G. Sisson, R. Arends, and D. Blacka. DNS
Security (DNSSEC) Hashed Authenticated Denial of
Existence. RFC 5155, Mar. 2008.

[7] M. Wander, L. Schwittmann, C. Boelmann, and
T. Weis. GPU-Based NSEC3 Hash Breaking. In
Network Computing and Applications (NCA), 2014
IEEE 13th International Symposium on, pages 137–144.
IEEE, 2014.


